Paper ID: 2412.17541

Concept Discovery in Deep Neural Networks for Explainable Face Anti-Spoofing

Haoyuan Zhang, Xiangyu Zhu, Li Gao, Jiawei Pan, Kai Pang, Guoying Zhao, Stan Z. Li, Zhen Lei

With the rapid growth usage of face recognition in people's daily life, face anti-spoofing becomes increasingly important to avoid malicious attacks. Recent face anti-spoofing models can reach a high classification accuracy on multiple datasets but these models can only tell people ``this face is fake'' while lacking the explanation to answer ``why it is fake''. Such a system undermines trustworthiness and causes user confusion, as it denies their requests without providing any explanations. In this paper, we incorporate XAI into face anti-spoofing and propose a new problem termed X-FAS (eXplainable Face Anti-Spoofing) empowering face anti-spoofing models to provide an explanation. We propose SPED (SPoofing Evidence Discovery), an X-FAS method which can discover spoof concepts and provide reliable explanations on the basis of discovered concepts. To evaluate the quality of X-FAS methods, we propose an X-FAS benchmark with annotated spoofing evidence by experts. We analyze SPED explanations on face anti-spoofing dataset and compare SPED quantitatively and qualitatively with previous XAI methods on proposed X-FAS benchmark. Experimental results demonstrate SPED's ability to generate reliable explanations.

Submitted: Dec 23, 2024