Paper ID: 2412.17622

Be More Diverse than the Most Diverse: Online Selection of Diverse Mixtures of Generative Models

Parham Rezaei, Farzan Farnia, Cheuk Ting Li

The availability of multiple training algorithms and architectures for generative models requires a selection mechanism to form a single model over a group of well-trained generation models. The selection task is commonly addressed by identifying the model that maximizes an evaluation score based on the diversity and quality of the generated data. However, such a best-model identification approach overlooks the possibility that a mixture of available models can outperform each individual model. In this work, we explore the selection of a mixture of multiple generative models and formulate a quadratic optimization problem to find an optimal mixture model achieving the maximum of kernel-based evaluation scores including kernel inception distance (KID) and R\'{e}nyi kernel entropy (RKE). To identify the optimal mixture of the models using the fewest possible sample queries, we propose an online learning approach called Mixture Upper Confidence Bound (Mixture-UCB). Specifically, our proposed online learning method can be extended to every convex quadratic function of the mixture weights, for which we prove a concentration bound to enable the application of the UCB approach. We prove a regret bound for the proposed Mixture-UCB algorithm and perform several numerical experiments to show the success of the proposed Mixture-UCB method in finding the optimal mixture of text-based and image-based generative models. The codebase is available at this https URL .

Submitted: Dec 23, 2024