Paper ID: 2412.18354

The Thousand Brains Project: A New Paradigm for Sensorimotor Intelligence

Viviane Clay, Niels Leadholm, Jeff Hawkins

Artificial intelligence has advanced rapidly in the last decade, driven primarily by progress in the scale of deep-learning systems. Despite these advances, the creation of intelligent systems that can operate effectively in diverse, real-world environments remains a significant challenge. In this white paper, we outline the Thousand Brains Project, an ongoing research effort to develop an alternative, complementary form of AI, derived from the operating principles of the neocortex. We present an early version of a thousand-brains system, a sensorimotor agent that is uniquely suited to quickly learn a wide range of tasks and eventually implement any capabilities the human neocortex has. Core to its design is the use of a repeating computational unit, the learning module, modeled on the cortical columns found in mammalian brains. Each learning module operates as a semi-independent unit that can model entire objects, represents information through spatially structured reference frames, and both estimates and is able to effect movement in the world. Learning is a quick, associative process, similar to Hebbian learning in the brain, and leverages inductive biases around the spatial structure of the world to enable rapid and continual learning. Multiple learning modules can interact with one another both hierarchically and non-hierarchically via a "cortical messaging protocol" (CMP), creating more abstract representations and supporting multimodal integration. We outline the key principles motivating the design of thousand-brains systems and provide details about the implementation of Monty, our first instantiation of such a system. Code can be found at this https URL, along with more detailed documentation at this https URL

Submitted: Dec 24, 2024