Paper ID: 2412.18505
VORTEX: A Spatial Computing Framework for Optimized Drone Telemetry Extraction from First-Person View Flight Data
James E. Gallagher, Edward J. Oughton
This paper presents the Visual Optical Recognition Telemetry EXtraction (VORTEX) system for extracting and analyzing drone telemetry data from First Person View (FPV) Uncrewed Aerial System (UAS) footage. VORTEX employs MMOCR, a PyTorch-based Optical Character Recognition (OCR) toolbox, to extract telemetry variables from drone Heads Up Display (HUD) recordings, utilizing advanced image preprocessing techniques, including CLAHE enhancement and adaptive thresholding. The study optimizes spatial accuracy and computational efficiency through systematic investigation of temporal sampling rates (1s, 5s, 10s, 15s, 20s) and coordinate processing methods. Results demonstrate that the 5-second sampling rate, utilizing 4.07% of available frames, provides the optimal balance with a point retention rate of 64% and mean speed accuracy within 4.2% of the 1-second baseline while reducing computational overhead by 80.5%. Comparative analysis of coordinate processing methods reveals that while UTM Zone 33N projection and Haversine calculations provide consistently similar results (within 0.1% difference), raw WGS84 coordinates underestimate distances by 15-30% and speeds by 20-35%. Altitude measurements showed unexpected resilience to sampling rate variations, with only 2.1% variation across all intervals. This research is the first of its kind, providing quantitative benchmarks for establishing a robust framework for drone telemetry extraction and analysis using open-source tools and spatial libraries.
Submitted: Dec 24, 2024