Paper ID: 2412.18582

Exploring Embedding Priors in Prompt-Tuning for Improved Interpretability and Control

Sergey Sedov, Sumanth Bharadwaj Hachalli Karanam, Venu Gopal Kadamba

Prompt-Tuning is an efficient method for adapting pre-trained language models to new tasks with minimal computational overhead by modifying prompt embeddings. In this work, we investigate how crucial the phenomenon of embedding collapse, frequently observed in Prompt-Tuning, is for the final performance of the model. To address this question, we designed embedding priors and compared them with posteriors of the converged Soft and Deep Prompt-Tuning methods. Our findings suggest that priors strongly affect the position of the tuned embeddings, and models can effectively work with embeddings from different parts of activation spaces, including completely new regions. As the final Prompt-Tuning capabilities are limited, we hypothesize that controllable Prompt-Tuning posteriors may serve as a good starting point for tasks such as chain-of-thought (COT) distillation. Our experiments also show that generated trajectories are not localized in the activation space of the models. However, there are distinct clusters of activations for distant tasks (e.g., NLP and arithmetic), while activations between NLP tasks (e.g., Question-Answering and MLM) lie in the same cluster. These observations raise questions about the importance of a single activation cluster for the generalization abilities of large language models.

Submitted: Dec 24, 2024