Paper ID: 2412.18644

DynaGRAG: Improving Language Understanding and Generation through Dynamic Subgraph Representation in Graph Retrieval-Augmented Generation

Karishma Thakrar

Graph Retrieval-Augmented Generation (GRAG or Graph RAG) architectures aim to enhance language understanding and generation by leveraging external knowledge. However, effectively capturing and integrating the rich semantic information present in textual and structured data remains a challenge. To address this, a novel GRAG framework is proposed to focus on enhancing subgraph representation and diversity within the knowledge graph. By improving graph density, capturing entity and relation information more effectively, and dynamically prioritizing relevant and diverse subgraphs, the proposed approach enables a more comprehensive understanding of the underlying semantic structure. This is achieved through a combination of de-duplication processes, two-step mean pooling of embeddings, query-aware retrieval considering unique nodes, and a Dynamic Similarity-Aware BFS (DSA-BFS) traversal algorithm. Integrating Graph Convolutional Networks (GCNs) and Large Language Models (LLMs) through hard prompting further enhances the learning of rich node and edge representations while preserving the hierarchical subgraph structure. Experimental results on multiple benchmark datasets demonstrate the effectiveness of the proposed GRAG framework, showcasing the significance of enhanced subgraph representation and diversity for improved language understanding and generation.

Submitted: Dec 24, 2024