Paper ID: 2412.18985

TravelAgent: Generative Agents in the Built Environment

Ariel Noyman, Kai Hu, Kent Larson

Understanding human behavior in built environments is critical for designing functional, user centered urban spaces. Traditional approaches, such as manual observations, surveys, and simplified simulations, often fail to capture the complexity and dynamics of real world behavior. To address these limitations, we introduce TravelAgent, a novel simulation platform that models pedestrian navigation and activity patterns across diverse indoor and outdoor environments under varying contextual and environmental conditions. TravelAgent leverages generative agents integrated into 3D virtual environments, enabling agents to process multimodal sensory inputs and exhibit human-like decision-making, behavior, and adaptation. Through experiments, including navigation, wayfinding, and free exploration, we analyze data from 100 simulations comprising 1898 agent steps across diverse spatial layouts and agent archetypes, achieving an overall task completion rate of 76%. Using spatial, linguistic, and sentiment analyses, we show how agents perceive, adapt to, or struggle with their surroundings and assigned tasks. Our findings highlight the potential of TravelAgent as a tool for urban design, spatial cognition research, and agent-based modeling. We discuss key challenges and opportunities in deploying generative agents for the evaluation and refinement of spatial designs, proposing TravelAgent as a new paradigm for simulating and understanding human experiences in built environments.

Submitted: Dec 25, 2024