Paper ID: 2412.19245
Sentiment trading with large language models
Kemal Kirtac, Guido Germano
We investigate the efficacy of large language models (LLMs) in sentiment analysis of U.S. financial news and their potential in predicting stock market returns. We analyze a dataset comprising 965,375 news articles that span from January 1, 2010, to June 30, 2023; we focus on the performance of various LLMs, including BERT, OPT, FINBERT, and the traditional Loughran-McDonald dictionary model, which has been a dominant methodology in the finance literature. The study documents a significant association between LLM scores and subsequent daily stock returns. Specifically, OPT, which is a GPT-3 based LLM, shows the highest accuracy in sentiment prediction with an accuracy of 74.4%, slightly ahead of BERT (72.5%) and FINBERT (72.2%). In contrast, the Loughran-McDonald dictionary model demonstrates considerably lower effectiveness with only 50.1% accuracy. Regression analyses highlight a robust positive impact of OPT model scores on next-day stock returns, with coefficients of 0.274 and 0.254 in different model specifications. BERT and FINBERT also exhibit predictive relevance, though to a lesser extent. Notably, we do not observe a significant relationship between the Loughran-McDonald dictionary model scores and stock returns, challenging the efficacy of this traditional method in the current financial context. In portfolio performance, the long-short OPT strategy excels with a Sharpe ratio of 3.05, compared to 2.11 for BERT and 2.07 for FINBERT long-short strategies. Strategies based on the Loughran-McDonald dictionary yield the lowest Sharpe ratio of 1.23. Our findings emphasize the superior performance of advanced LLMs, especially OPT, in financial market prediction and portfolio management, marking a significant shift in the landscape of financial analysis tools with implications to financial regulation and policy analysis.
Submitted: Dec 26, 2024