Paper ID: 2412.20090
From Worms to Mice: Homeostasis Maybe All You Need
Jesus Marco de Lucas
In this brief and speculative commentary, we explore ideas inspired by neural networks in machine learning, proposing that a simple neural XOR motif, involving both excitatory and inhibitory connections, may provide the basis for a relevant mode of plasticity in neural circuits of living organisms, with homeostasis as the sole guiding principle. This XOR motif simply signals the discrepancy between incoming signals and reference signals, thereby providing a basis for a loss function in learning neural circuits, and at the same time regulating homeostasis by halting the propagation of these incoming signals. The core motif uses a 4:1 ratio of excitatory to inhibitory neurons, and supports broader neural patterns such as the well-known 'winner takes all' (WTA) mechanism. We examined the prevalence of the XOR motif in the published connectomes of various organisms with increasing complexity, and found that it ranges from tens (in C. elegans) to millions (in several Drosophila neuropils) and more than tens of millions (in mouse V1 visual cortex). If validated, our hypothesis identifies two of the three key components in analogy to machine learning models: the architecture and the loss function. And we propose that a relevant type of biological neural plasticity is simply driven by a basic control or regulatory system, which has persisted and adapted despite the increasing complexity of organisms throughout evolution.
Submitted: Dec 28, 2024