Paper ID: 2412.20709
Residual Connection Networks in Medical Image Processing: Exploration of ResUnet++ Model Driven by Human Computer Interaction
Peixin Dai, Jingsi Zhang, Zhitao Shu
Accurate identification and localisation of brain tumours from medical images remain challenging due to tumour variability and structural complexity. Convolutional Neural Networks (CNNs), particularly ResNet and Unet, have made significant progress in medical image processing, offering robust capabilities for image segmentation. However, limited research has explored their integration with human-computer interaction (HCI) to enhance usability, interpretability, and clinical applicability. This paper introduces ResUnet++, an advanced hybrid model combining ResNet and Unet++, designed to improve tumour detection and localisation while fostering seamless interaction between clinicians and medical imaging systems. ResUnet++ integrates residual blocks in both the downsampling and upsampling phases, ensuring critical image features are preserved. By incorporating HCI principles, the model provides intuitive, real-time feedback, enabling clinicians to visualise and interact with tumour localisation results effectively. This fosters informed decision-making and supports workflow efficiency in clinical settings. We evaluated ResUnet++ on the LGG Segmentation Dataset, achieving a Jaccard Loss of 98.17%. The results demonstrate its strong segmentation performance and potential for real-world applications. By bridging advanced medical imaging techniques with HCI, ResUnet++ offers a foundation for developing interactive diagnostic tools, improving clinician trust, decision accuracy, and patient outcomes, and advancing the integration of AI in healthcare workflows.
Submitted: Dec 30, 2024