Paper ID: 2412.20807
Two Heads Are Better Than One: Averaging along Fine-Tuning to Improve Targeted Transferability
Hui Zeng, Sanshuai Cui, Biwei Chen, Anjie Peng
With much longer optimization time than that of untargeted attacks notwithstanding, the transferability of targeted attacks is still far from satisfactory. Recent studies reveal that fine-tuning an existing adversarial example (AE) in feature space can efficiently boost its targeted transferability. However, existing fine-tuning schemes only utilize the endpoint and ignore the valuable information in the fine-tuning trajectory. Noting that the vanilla fine-tuning trajectory tends to oscillate around the periphery of a flat region of the loss surface, we propose averaging over the fine-tuning trajectory to pull the crafted AE towards a more centered region. We compare the proposed method with existing fine-tuning schemes by integrating them with state-of-the-art targeted attacks in various attacking scenarios. Experimental results uphold the superiority of the proposed method in boosting targeted transferability. The code is available at github.com/zengh5/Avg_FT.
Submitted: Dec 30, 2024