Paper ID: 2412.20826
ReStory: VLM-augmentation of Social Human-Robot Interaction Datasets
Fanjun Bu, Wendy Ju
Internet-scaled datasets are a luxury for human-robot interaction (HRI) researchers, as collecting natural interaction data in the wild is time-consuming and logistically challenging. The problem is exacerbated by robots' different form factors and interaction modalities. Inspired by recent work on ethnomethodological and conversation analysis (EMCA) in the domain of HRI, we propose ReStory, a method that has the potential to augment existing in-the-wild human-robot interaction datasets leveraging Vision Language Models. While still requiring human supervision, ReStory is capable of synthesizing human-interpretable interaction scenarios in the form of storyboards. We hope our proposed approach provides HRI researchers and interaction designers with a new angle to utilizing their valuable and scarce data.
Submitted: Dec 30, 2024