Paper ID: 2501.00585

Sidewalk Hazard Detection Using Variational Autoencoder and One-Class SVM

Edgar Guzman, Robert D. Howe

The unpredictable nature of outdoor settings introduces numerous safety concerns, making hazard detection crucial for safe navigation. This paper introduces a novel system for sidewalk safety navigation utilizing a hybrid approach that combines a Variational Autoencoder (VAE) with a One-Class Support Vector Machine (OCSVM). The system is designed to detect anomalies on sidewalks that could potentially pose walking hazards. A dataset comprising over 15,000 training frames and 5,000 testing frames was collected using video recordings, capturing various sidewalk scenarios, including normal and hazardous conditions. During deployment, the VAE utilizes its reconstruction mechanism to detect anomalies within a frame. Poor reconstruction by the VAE implies the presence of an anomaly, after which the OCSVM is used to confirm whether the anomaly is hazardous or non-hazardous. The proposed VAE model demonstrated strong performance, with a high Area Under the Curve (AUC) of 0.94, effectively distinguishing anomalies that could be potential hazards. The OCSVM is employed to reduce the detection of false hazard anomalies, such as manhole or water valve covers. This approach achieves an accuracy of 91.4%, providing a highly reliable system for distinguishing between hazardous and non-hazardous scenarios. These results suggest that the proposed system offers a robust solution for hazard detection in uncertain environments.

Submitted: Dec 31, 2024