Paper ID: 2501.01262

Detail Matters: Mamba-Inspired Joint Unfolding Network for Snapshot Spectral Compressive Imaging

Mengjie Qin, Yuchao Feng, Zongliang Wu, Yulun Zhang, Xin Yuan

In the coded aperture snapshot spectral imaging system, Deep Unfolding Networks (DUNs) have made impressive progress in recovering 3D hyperspectral images (HSIs) from a single 2D measurement. However, the inherent nonlinear and ill-posed characteristics of HSI reconstruction still pose challenges to existing methods in terms of accuracy and stability. To address this issue, we propose a Mamba-inspired Joint Unfolding Network (MiJUN), which integrates physics-embedded DUNs with learning-based HSI imaging. Firstly, leveraging the concept of trapezoid discretization to expand the representation space of unfolding networks, we introduce an accelerated unfolding network scheme. This approach can be interpreted as a generalized accelerated half-quadratic splitting with a second-order differential equation, which reduces the reliance on initial optimization stages and addresses challenges related to long-range interactions. Crucially, within the Mamba framework, we restructure the Mamba-inspired global-to-local attention mechanism by incorporating a selective state space model and an attention mechanism. This effectively reinterprets Mamba as a variant of the Transformer} architecture, improving its adaptability and efficiency. Furthermore, we refine the scanning strategy with Mamba by integrating the tensor mode-$k$ unfolding into the Mamba network. This approach emphasizes the low-rank properties of tensors along various modes, while conveniently facilitating 12 scanning directions. Numerical and visual comparisons on both simulation and real datasets demonstrate the superiority of our proposed MiJUN, and achieving overwhelming detail representation.

Submitted: Jan 2, 2025