Paper ID: 2501.01608
Online Meta-Learning Channel Autoencoder for Dynamic End-to-end Physical Layer Optimization
Ali Owfi, Jonathan Ashdown, Kurt Turck
Channel Autoencoders (CAEs) have shown significant potential in optimizing the physical layer of a wireless communication system for a specific channel through joint end-to-end training. However, the practical implementation of CAEs faces several challenges, particularly in realistic and dynamic scenarios. Channels in communication systems are dynamic and change with time. Still, most proposed CAE designs assume stationary scenarios, meaning they are trained and tested for only one channel realization without regard for the dynamic nature of wireless communication systems. Moreover, conventional CAEs are designed based on the assumption of having access to a large number of pilot signals, which act as training samples in the context of CAEs. However, in real-world applications, it is not feasible for a CAE operating in real-time to acquire large amounts of training samples for each new channel realization. Hence, the CAE has to be deployable in few-shot learning scenarios where only limited training samples are available. Furthermore, most proposed conventional CAEs lack fast adaptability to new channel realizations, which becomes more pronounced when dealing with a limited number of pilots. To address these challenges, this paper proposes the Online Meta Learning channel AE (OML-CAE) framework for few-shot CAE scenarios with dynamic channels. The OML-CAE framework enhances adaptability to varying channel conditions in an online manner, allowing for dynamic adjustments in response to evolving communication scenarios. Moreover, it can adapt to new channel conditions using only a few pilots, drastically increasing pilot efficiency and making the CAE design feasible in realistic scenarios.
Submitted: Jan 3, 2025