Paper ID: 2501.01849
Multi-Agent Conversational Online Learning for Adaptive LLM Response Identification
Xiangxiang Dai, Yuejin Xie, Maoli Liu, Xuchuang Wang, Zhuohua Li, Huanyu Wang, John C.S. Lui
The remarkable generative capability of large language models (LLMs) has sparked a growing interest in automatically generating responses for different applications. Given the dynamic nature of user preferences and the uncertainty of LLM response performance, it is crucial to design efficient online learning algorithms to identify optimal LLM responses (i.e., high-quality responses that also meet user preferences). Most existing online algorithms adopt a centralized approach and fail to leverage explicit user preferences for more efficient and personalized LLM response identification. In contrast, this paper introduces \textit{MACO} (\underline{M}ulti-\underline{A}gent \underline{C}onversational \underline{O}nline Learning for Adaptive LLM Response Identification): 1) The online LLM response identification process is accelerated by multiple local agents (such as smartphones), while enhancing data privacy; 2) A novel conversational mechanism is proposed to adaptively conduct conversations for soliciting user preferences (e.g., a preference for a humorous tone over a serious one in generated responses), so to minimize uncertainty in preference estimation. Our theoretical analysis demonstrates that \cadi\ is near-optimal regarding cumulative regret. Additionally, \cadi\ offers reduced communication costs and computational complexity by eliminating the traditional, computing-intensive ``G-optimal design" found in previous works. Extensive experiments with the open LLM \textit{Llama}, coupled with two different embedding models from Google and OpenAI for text vector representation, demonstrate that \cadi\ significantly outperforms the current state-of-the-art in online LLM response identification.
Submitted: Jan 3, 2025