Paper ID: 2501.02156
The Race to Efficiency: A New Perspective on AI Scaling Laws
Chien-Ping Lu
As large-scale AI models expand, training becomes costlier and sustaining progress grows harder. Classical scaling laws (e.g., Kaplan et al. (2020), Hoffmann et al. (2022)) predict training loss from a static compute budget yet neglect time and efficiency, prompting the question: how can we balance ballooning GPU fleets with rapidly improving hardware and algorithms? We introduce the relative-loss equation, a time- and efficiency-aware framework that extends classical AI scaling laws. Our model shows that, without ongoing efficiency gains, advanced performance could demand millennia of training or unrealistically large GPU fleets. However, near-exponential progress remains achievable if the "efficiency-doubling rate" parallels Moore's Law. By formalizing this race to efficiency, we offer a quantitative roadmap for balancing front-loaded GPU investments with incremental improvements across the AI stack. Empirical trends suggest that sustained efficiency gains can push AI scaling well into the coming decade, providing a new perspective on the diminishing returns inherent in classical scaling.
Submitted: Jan 4, 2025