Paper ID: 2501.02295

Explicit vs. Implicit: Investigating Social Bias in Large Language Models through Self-Reflection

Yachao Zhao, Bo Wang, Yan Wang

Large Language Models (LLMs) have been shown to exhibit various biases and stereotypes in their generated content. While extensive research has investigated bias in LLMs, prior work has predominantly focused on explicit bias, leaving the more nuanced implicit biases largely unexplored. This paper presents a systematic framework grounded in social psychology theories to investigate and compare explicit and implicit biases in LLMs. We propose a novel "self-reflection" based evaluation framework that operates in two phases: first measuring implicit bias through simulated psychological assessment methods, then evaluating explicit bias by prompting LLMs to analyze their own generated content. Through extensive experiments on state-of-the-art LLMs across multiple social dimensions, we demonstrate that LLMs exhibit a substantial inconsistency between explicit and implicit biases, where explicit biases manifest as mild stereotypes while implicit biases show strong stereotypes. Furthermore, we investigate the underlying factors contributing to this explicit-implicit bias inconsistency. Our experiments examine the effects of training data scale, model parameters, and alignment techniques. Results indicate that while explicit bias diminishes with increased training data and model size, implicit bias exhibits a contrasting upward trend. Notably, contemporary alignment methods (e.g., RLHF, DPO) effectively suppress explicit bias but show limited efficacy in mitigating implicit bias. These findings suggest that while scaling up models and alignment training can address explicit bias, the challenge of implicit bias requires novel approaches beyond current methodologies.

Submitted: Jan 4, 2025