Paper ID: 2501.03119
From Models to Network Topologies: A Topology Inference Attack in Decentralized Federated Learning
Chao Feng, Yuanzhe Gao, Alberto Huertas Celdran, Gerome Bovet, Burkhard Stiller
Federated Learning (FL) is widely recognized as a privacy-preserving machine learning paradigm due to its model-sharing mechanism that avoids direct data exchange. However, model training inevitably leaves exploitable traces that can be used to infer sensitive information. In Decentralized FL (DFL), the overlay topology significantly influences its models' convergence, robustness, and security. This study explores the feasibility of inferring the overlay topology of DFL systems based solely on model behavior, introducing a novel Topology Inference Attack. A taxonomy of topology inference attacks is proposed, categorizing them by the attacker's capabilities and knowledge. Practical attack strategies are developed for different scenarios, and quantitative experiments are conducted to identify key factors influencing the attack effectiveness. Experimental results demonstrate that analyzing only the public models of individual nodes can accurately infer the DFL topology, underscoring the risk of sensitive information leakage in DFL systems. This finding offers valuable insights for improving privacy preservation in decentralized learning environments.
Submitted: Jan 6, 2025