Paper ID: 2501.03276

ComMer: a Framework for Compressing and Merging User Data for Personalization

Yoel Zeldes, Amir Zait, Ilia Labzovsky, Danny Karmon, Efrat Farkash

Large Language Models (LLMs) excel at a wide range of tasks, but adapting them to new data, particularly for personalized applications, poses significant challenges due to resource and computational constraints. Existing methods either rely on exposing fresh data to the model through the prompt, which is limited by context size and computationally expensive at inference time, or fine-tuning, which incurs substantial training and update costs. In this paper, we introduce ComMer - Compress and Merge - a novel framework that efficiently personalizes LLMs by compressing users' documents into compact representations, which are then merged and fed into a frozen LLM. We evaluate ComMer on two types of personalization tasks - personalized skill learning, using the tweet paraphrasing dataset and the personalized news headline generation dataset from the LaMP benchmark, and knowledge-intensive, using the PerLTQA dataset. Our experiments demonstrate that in constrained inference budget scenarios ComMer achieves superior quality in skill learning tasks, while highlighting limitations in knowledge-intensive settings due to the loss of detailed information. These results offer insights into trade-offs and potential optimizations in multi-document compression for personalization.

Submitted: Jan 5, 2025