Paper ID: 2501.03616
BTMTrack: Robust RGB-T Tracking via Dual-template Bridging and Temporal-Modal Candidate Elimination
Zhongxuan Zhang, Bi Zeng, Xinyu Ni, Yimin Du
RGB-T tracking leverages the complementary strengths of RGB and thermal infrared (TIR) modalities to address challenging scenarios such as low illumination and adverse weather. However, existing methods often fail to effectively integrate temporal information and perform efficient cross-modal interactions, which constrain their adaptability to dynamic targets. In this paper, we propose BTMTrack, a novel framework for RGB-T tracking. The core of our approach lies in the dual-template backbone network and the Temporal-Modal Candidate Elimination (TMCE) strategy. The dual-template backbone effectively integrates temporal information, while the TMCE strategy focuses the model on target-relevant tokens by evaluating temporal and modal correlations, reducing computational overhead and avoiding irrelevant background noise. Building upon this foundation, we propose the Temporal Dual Template Bridging (TDTB) module, which facilitates precise cross-modal fusion through dynamically filtered tokens. This approach further strengthens the interaction between templates and the search region. Extensive experiments conducted on three benchmark datasets demonstrate the effectiveness of BTMTrack. Our method achieves state-of-the-art performance, with a 72.3% precision rate on the LasHeR test set and competitive results on RGBT210 and RGBT234 datasets.
Submitted: Jan 7, 2025