Paper ID: 2501.03630

MC-VTON: Minimal Control Virtual Try-On Diffusion Transformer

Junsheng Luan, Guangyuan Li, Lei Zhao, Wei Xing

Virtual try-on methods based on diffusion models achieve realistic try-on effects. They use an extra reference network or an additional image encoder to process multiple conditional image inputs, which results in high training costs. Besides, they require more than 25 inference steps, bringing a long inference time. In this work, with the development of diffusion transformer (DiT), we rethink the necessity of reference network or image encoder, then propose MC-VTON, enabling DiT to integrate minimal conditional try-on inputs by utilizing its intrinsic backbone. Compared to existing methods, the superiority of MC-VTON is demonstrated in four aspects: (1)Superior detail fidelity. Our DiT-based MC-VTON exhibits superior fidelity in preserving fine-grained details. (2)Simplified network and inputs. We remove any extra reference network or image encoder. We also remove unnecessary conditions like the long prompt, pose estimation, human parsing, and depth map. We require only the masked person image and the garment image. (3)Parameter-efficient training. To process the try-on task, we fine-tune the FLUX.1-dev with only 39.7M additional parameters 0.33% of the backbone parameters). (4)Less inference steps. We apply distillation diffusion on MC-VTON and only need 8 steps to generate a realistic try-on image, with only 86.8M additional parameters (0.72% of the backbone parameters). Experiments show that MC-VTON achieves superior qualitative and quantitative results with fewer condition inputs, fewer inference steps, and fewer trainable parameters than baseline methods.

Submitted: Jan 7, 2025