Paper ID: 2501.03824

Online Reinforcement Learning-Based Dynamic Adaptive Evaluation Function for Real-Time Strategy Tasks

Weilong Yang, Jie Zhang, Xunyun Liu, Yanqing Ye

Effective evaluation of real-time strategy tasks requires adaptive mechanisms to cope with dynamic and unpredictable environments. This study proposes a method to improve evaluation functions for real-time responsiveness to battle-field situation changes, utilizing an online reinforcement learning-based dynam-ic weight adjustment mechanism within the real-time strategy game. Building on traditional static evaluation functions, the method employs gradient descent in online reinforcement learning to update weights dynamically, incorporating weight decay techniques to ensure stability. Additionally, the AdamW optimizer is integrated to adjust the learning rate and decay rate of online reinforcement learning in real time, further reducing the dependency on manual parameter tun-ing. Round-robin competition experiments demonstrate that this method signifi-cantly enhances the application effectiveness of the Lanchester combat model evaluation function, Simple evaluation function, and Simple Sqrt evaluation function in planning algorithms including IDABCD, IDRTMinimax, and Port-folio AI. The method achieves a notable improvement in scores, with the en-hancement becoming more pronounced as the map size increases. Furthermore, the increase in evaluation function computation time induced by this method is kept below 6% for all evaluation functions and planning algorithms. The pro-posed dynamic adaptive evaluation function demonstrates a promising approach for real-time strategy task evaluation.

Submitted: Jan 7, 2025