Paper ID: 2501.04329
An Efficient Adaptive Compression Method for Human Perception and Machine Vision Tasks
Lei Liu, Zhenghao Chen, Zhihao Hu, Dong Xu
While most existing neural image compression (NIC) and neural video compression (NVC) methodologies have achieved remarkable success, their optimization is primarily focused on human visual perception. However, with the rapid development of artificial intelligence, many images and videos will be used for various machine vision tasks. Consequently, such existing compression methodologies cannot achieve competitive performance in machine vision. In this work, we introduce an efficient adaptive compression (EAC) method tailored for both human perception and multiple machine vision tasks. Our method involves two key modules: 1), an adaptive compression mechanism, that adaptively selects several subsets from latent features to balance the optimizations for multiple machine vision tasks (e.g., segmentation, and detection) and human vision. 2), a task-specific adapter, that uses the parameter-efficient delta-tuning strategy to stimulate the comprehensive downstream analytical networks for specific machine vision tasks. By using the above two modules, we can optimize the bit-rate costs and improve machine vision performance. In general, our proposed EAC can seamlessly integrate with existing NIC (i.e., Ball\'e2018, and Cheng2020) and NVC (i.e., DVC, and FVC) methods. Extensive evaluation on various benchmark datasets (i.e., VOC2007, ILSVRC2012, VOC2012, COCO, UCF101, and DAVIS) shows that our method enhances performance for multiple machine vision tasks while maintaining the quality of human vision.
Submitted: Jan 8, 2025