Paper ID: 2501.04331
AutoDFL: A Scalable and Automated Reputation-Aware Decentralized Federated Learning
Meryem Malak Dif, Mouhamed Amine Bouchiha, Mourad Rabah, Yacine Ghamri-Doudane
Blockchained federated learning (BFL) combines the concepts of federated learning and blockchain technology to enhance privacy, security, and transparency in collaborative machine learning models. However, implementing BFL frameworks poses challenges in terms of scalability and cost-effectiveness. Reputation-aware BFL poses even more challenges, as blockchain validators are tasked with processing federated learning transactions along with the transactions that evaluate FL tasks and aggregate reputations. This leads to faster blockchain congestion and performance degradation. To improve BFL efficiency while increasing scalability and reducing on-chain reputation management costs, this paper proposes AutoDFL, a scalable and automated reputation-aware decentralized federated learning framework. AutoDFL leverages zk-Rollups as a Layer-2 scaling solution to boost the performance while maintaining the same level of security as the underlying Layer-1 blockchain. Moreover, AutoDFL introduces an automated and fair reputation model designed to incentivize federated learning actors. We develop a proof of concept for our framework for an accurate evaluation. Tested with various custom workloads, AutoDFL reaches an average throughput of over 3000 TPS with a gas reduction of up to 20X.
Submitted: Jan 8, 2025