Paper ID: 2501.04377
On Computational Limits and Provably Efficient Criteria of Visual Autoregressive Models: A Fine-Grained Complexity Analysis
Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song
Recently, Visual Autoregressive ($\mathsf{VAR}$) Models introduced a groundbreaking advancement in the field of image generation, offering a scalable approach through a coarse-to-fine "next-scale prediction" paradigm. However, the state-of-the-art algorithm of $\mathsf{VAR}$ models in [Tian, Jiang, Yuan, Peng and Wang, NeurIPS 2024] takes $O(n^4)$ time, which is computationally inefficient. In this work, we analyze the computational limits and efficiency criteria of $\mathsf{VAR}$ Models through a fine-grained complexity lens. Our key contribution is identifying the conditions under which $\mathsf{VAR}$ computations can achieve sub-quadratic time complexity. Specifically, we establish a critical threshold for the norm of input matrices used in $\mathsf{VAR}$ attention mechanisms. Above this threshold, assuming the Strong Exponential Time Hypothesis ($\mathsf{SETH}$) from fine-grained complexity theory, a sub-quartic time algorithm for $\mathsf{VAR}$ models is impossible. To substantiate our theoretical findings, we present efficient constructions leveraging low-rank approximations that align with the derived criteria. This work initiates the study of the computational efficiency of the $\mathsf{VAR}$ model from a theoretical perspective. Our technique will shed light on advancing scalable and efficient image generation in $\mathsf{VAR}$ frameworks.
Submitted: Jan 8, 2025