Paper ID: 2501.04435

A Digital Shadow for Modeling, Studying and Preventing Urban Crime

Juan Palma-Borda, Eduardo Guzmán, María-Victoria Belmonte

Crime is one of the greatest threats to urban security. Around 80 percent of the world's population lives in countries with high levels of criminality. Most of the crimes committed in the cities take place in their urban environments. This paper presents the development and validation of a digital shadow platform for modeling and simulating urban crime. This digital shadow has been constructed using data-driven agent-based modeling and simulation techniques, which are suitable for capturing dynamic interactions among individuals and with their environment. Our approach transforms and integrates well-known criminological theories and the expert knowledge of law enforcement agencies (LEA), policy makers, and other stakeholders under a theoretical model, which is in turn combined with real crime, spatial (cartographic) and socio-economic data into an urban model characterizing the daily behavior of citizens. The digital shadow has also been instantiated for the city of Malaga, for which we had over 300,000 complaints available. This instance has been calibrated with those complaints and other geographic and socio-economic information of the city. To the best of our knowledge, our digital shadow is the first for large urban areas that has been calibrated with a large dataset of real crime reports and with an accurate representation of the urban environment. The performance indicators of the model after being calibrated, in terms of the metrics widely used in predictive policing, suggest that our simulated crime generation matches the general pattern of crime in the city according to historical data. Our digital shadow platform could be an interesting tool for modeling and predicting criminal behavior in an urban environment on a daily basis and, thus, a useful tool for policy makers, criminologists, sociologists, LEAs, etc. to study and prevent urban crime.

Submitted: Jan 8, 2025