Paper ID: 2501.05482

HP-BERT: A framework for longitudinal study of Hinduphobia on social media via LLMs

Ashutosh Singh, Rohitash Chandra

During the COVID-19 pandemic, community tensions intensified, fuelling Hinduphobic sentiments and discrimination against individuals of Hindu descent within India and worldwide. Large language models (LLMs) have become prominent in natural language processing (NLP) tasks and social media analysis, enabling longitudinal studies of platforms like X (formerly Twitter) for specific issues during COVID-19. We present an abuse detection and sentiment analysis framework that offers a longitudinal analysis of Hinduphobia on X (Twitter) during and after the COVID-19 pandemic. This framework assesses the prevalence and intensity of Hinduphobic discourse, capturing elements such as derogatory jokes and racist remarks through sentiment analysis and abuse detection from pre-trained and fine-tuned LLMs. Additionally, we curate and publish a "Hinduphobic COVID-19 X (Twitter) Dataset" of 8,000 tweets annotated for Hinduphobic abuse detection, which is used to fine-tune a BERT model, resulting in the development of the Hinduphobic BERT (HP-BERT) model. We then further fine-tune HP-BERT using the SenWave dataset for multi-label sentiment analysis. Our study encompasses approximately 27.4 million tweets from six countries, including Australia, Brazil, India, Indonesia, Japan, and the United Kingdom. Our findings reveal a strong correlation between spikes in COVID-19 cases and surges in Hinduphobic rhetoric, highlighting how political narratives, misinformation, and targeted jokes contributed to communal polarisation. These insights provide valuable guidance for developing strategies to mitigate communal tensions in future crises, both locally and globally. We advocate implementing automated monitoring and removal of such content on social media to curb divisive discourse.

Submitted: Jan 7, 2025