Paper ID: 2501.05795

Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization

Keita Kinjo

In recent years, explainability in machine learning has gained importance. In this context, counterfactual explanation (CE), which is an explanation method that uses examples, has attracted attention. However, it has been pointed out that CE is not robust when there are multiple machine-learning models. These problems are important when using machine learning to make safe decisions. In this paper, we propose robust CEs that introduce a new viewpoint - Pareto improvement - and a method that uses multi-objective optimization to generate it. To evaluate the proposed method, we conducted experiments using both simulated and actual data. The results demonstrate that the proposed method is robust and useful. We believe that this research will contribute to a wide range of research areas, such as explainability in machine learning, decision-making, and action planning based on machine learning.

Submitted: Jan 10, 2025