Paper ID: 2501.05809

AdaPRL: Adaptive Pairwise Regression Learning with Uncertainty Estimation for Universal Regression Tasks

Fuhang Liang, Rucong Xu, Deng Lin

Current deep regression models usually learn in point-wise way that treat each sample as an independent input, neglecting the relative ordering among different data. Consequently, the regression model could neglect the data 's interrelationships, potentially resulting in suboptimal performance. Moreover, the existence of aleatoric uncertainty in the training data may drive the model to capture non-generalizable patterns, contributing to increased overfitting. To address these issues, we propose a novel adaptive pairwise learning framework (AdaPRL) for regression tasks which leverages the relative differences between data points and integrates with deep probabilistic models to quantify the uncertainty associated with the predictions. Additionally, we adapt AdaPRL for applications in multi-task learning and multivariate time series forecasting. Extensive experiments with several real-world regression datasets including recommendation systems, age estimation, time series forecasting, natural language understanding, finance, and industry datasets show that AdaPRL is compatible with different backbone networks in various tasks and achieves state-of-the-art performance on the vast majority of tasks, highlighting its notable potential including enhancing prediction accuracy and ranking ability, increasing generalization capability, improving robustness to noisy data, improving resilience to reduced data, and enhancing interpretability, etc.

Submitted: Jan 10, 2025