Paper ID: 2501.05963
Finnish SQuAD: A Simple Approach to Machine Translation of Span Annotations
Emil Nuutinen, Iiro Rastas, Filip Ginter
We apply a simple method to machine translate datasets with span-level annotation using the DeepL MT service and its ability to translate formatted documents. Using this method, we produce a Finnish version of the SQuAD2.0 question answering dataset and train QA retriever models on this new dataset. We evaluate the quality of the dataset and more generally the MT method through direct evaluation, indirect comparison to other similar datasets, a backtranslation experiment, as well as through the performance of downstream trained QA models. In all these evaluations, we find that the method of transfer is not only simple to use but produces consistently better translated data. Given its good performance on the SQuAD dataset, it is likely the method can be used to translate other similar span-annotated datasets for other tasks and languages as well. All code and data is available under an open license: data at HuggingFace TurkuNLP/squad_v2_fi, code on GitHub TurkuNLP/squad2-fi, and model at HuggingFace TurkuNLP/bert-base-finnish-cased-squad2.
Submitted: Jan 10, 2025