Paper ID: 2501.06205

Leveraging Edge Intelligence and LLMs to Advance 6G-Enabled Internet of Automated Defense Vehicles

Murat Arda Onsu, Poonam Lohan, Burak Kantarci

The evolution of Artificial Intelligence (AI) and its subset Deep Learning (DL), has profoundly impacted numerous domains, including autonomous driving. The integration of autonomous driving in military settings reduces human casualties and enables precise and safe execution of missions in hazardous environments while allowing for reliable logistics support without the risks associated with fatigue-related errors. However, relying on autonomous driving solely requires an advanced decision-making model that is adaptable and optimum in any situation. Considering the presence of numerous interconnected autonomous vehicles in mission-critical scenarios, Ultra-Reliable Low Latency Communication (URLLC) is vital for ensuring seamless coordination, real-time data exchange, and instantaneous response to dynamic driving environments. The advent of 6G strengthens the Internet of Automated Defense Vehicles (IoADV) concept within the realm of Internet of Military Defense Things (IoMDT) by enabling robust connectivity, crucial for real-time data exchange, advanced navigation, and enhanced safety features through IoADV interactions. On the other hand, a critical advancement in this space is using pre-trained Generative Large Language Models (LLMs) for decision-making and communication optimization for autonomous driving. Hence, this work presents opportunities and challenges with a vision of realizing the full potential of these technologies in critical defense applications, especially through the advancement of IoADV and its role in enhancing autonomous military operations.

Submitted: Dec 28, 2024