Paper ID: 2501.06210

Applications of natural language processing in aviation safety: A review and qualitative analysis

Aziida Nanyonga, Keith Joiner, Ugur Turhan, Graham Wild

This study explores using Natural Language Processing in aviation safety, focusing on machine learning algorithms to enhance safety measures. There are currently May 2024, 34 Scopus results from the keyword search natural language processing and aviation safety. Analyzing these studies allows us to uncover trends in the methodologies, findings and implications of NLP in aviation. Both qualitative and quantitative tools have been used to investigate the current state of literature on NLP for aviation safety. The qualitative analysis summarises the research motivations, objectives, and outcomes, showing how NLP can be utilized to help identify critical safety issues and improve aviation safety. This study also identifies research gaps and suggests areas for future exploration, providing practical recommendations for the aviation industry. We discuss challenges in implementing NLP in aviation safety, such as the need for large, annotated datasets, and the difficulty in interpreting complex models. We propose solutions like active learning for data annotation and explainable AI for model interpretation. Case studies demonstrate the successful application of NLP in improving aviation safety, highlighting its potential to make aviation safer and more efficient.

Submitted: Jan 3, 2025