Paper ID: 2501.06219

WhACC: Whisker Automatic Contact Classifier with Expert Human-Level Performance

Phillip Maire, Samson G. King, Jonathan Andrew Cheung, Stefanie Walker, Samuel Andrew Hires

The rodent vibrissal system is pivotal in advancing neuroscience research, particularly for studies of cortical plasticity, learning, decision-making, sensory encoding, and sensorimotor integration. Despite the advantages, curating touch events is labor intensive and often requires >3 hours per million video frames, even after leveraging automated tools like the Janelia Whisker Tracker. We address this limitation by introducing Whisker Automatic Contact Classifier (WhACC), a python package designed to identify touch periods from high-speed videos of head-fixed behaving rodents with human-level performance. WhACC leverages ResNet50V2 for feature extraction, combined with LightGBM for Classification. Performance is assessed against three expert human curators on over one million frames. Pairwise touch classification agreement on 99.5% of video frames, equal to between-human agreement. Finally, we offer a custom retraining interface to allow model customization on a small subset of data, which was validated on four million frames across 16 single-unit electrophysiology recordings. Including this retraining step, we reduce human hours required to curate a 100 million frame dataset from ~333 hours to ~6 hours.

Submitted: Jan 6, 2025