Paper ID: 2501.06339
On The Statistical Complexity of Offline Decision-Making
Thanh Nguyen-Tang, Raman Arora
We study the statistical complexity of offline decision-making with function approximation, establishing (near) minimax-optimal rates for stochastic contextual bandits and Markov decision processes. The performance limits are captured by the pseudo-dimension of the (value) function class and a new characterization of the behavior policy that \emph{strictly} subsumes all the previous notions of data coverage in the offline decision-making literature. In addition, we seek to understand the benefits of using offline data in online decision-making and show nearly minimax-optimal rates in a wide range of regimes.
Submitted: Jan 10, 2025