Paper ID: 2501.06404

A Hybrid Framework for Reinsurance Optimization: Integrating Generative Models and Reinforcement Learning

Stella C. Dong, James R. Finlay

Reinsurance optimization is critical for insurers to manage risk exposure, ensure financial stability, and maintain solvency. Traditional approaches often struggle with dynamic claim distributions, high-dimensional constraints, and evolving market conditions. This paper introduces a novel hybrid framework that integrates {Generative Models}, specifically Variational Autoencoders (VAEs), with {Reinforcement Learning (RL)} using Proximal Policy Optimization (PPO). The framework enables dynamic and scalable optimization of reinsurance strategies by combining the generative modeling of complex claim distributions with the adaptive decision-making capabilities of reinforcement learning. The VAE component generates synthetic claims, including rare and catastrophic events, addressing data scarcity and variability, while the PPO algorithm dynamically adjusts reinsurance parameters to maximize surplus and minimize ruin probability. The framework's performance is validated through extensive experiments, including out-of-sample testing, stress-testing scenarios (e.g., pandemic impacts, catastrophic events), and scalability analysis across portfolio sizes. Results demonstrate its superior adaptability, scalability, and robustness compared to traditional optimization techniques, achieving higher final surpluses and computational efficiency. Key contributions include the development of a hybrid approach for high-dimensional optimization, dynamic reinsurance parameterization, and validation against stochastic claim distributions. The proposed framework offers a transformative solution for modern reinsurance challenges, with potential applications in multi-line insurance operations, catastrophe modeling, and risk-sharing strategy design.

Submitted: Jan 11, 2025