Paper ID: 2501.06491
Improving Requirements Classification with SMOTE-Tomek Preprocessing
Barak Or
This study emphasizes the domain of requirements engineering by applying the SMOTE-Tomek preprocessing technique, combined with stratified K-fold cross-validation, to address class imbalance in the PROMISE dataset. This dataset comprises 969 categorized requirements, classified into functional and non-functional types. The proposed approach enhances the representation of minority classes while maintaining the integrity of validation folds, leading to a notable improvement in classification accuracy. Logistic regression achieved 76.16\%, significantly surpassing the baseline of 58.31\%. These results highlight the applicability and efficiency of machine learning models as scalable and interpretable solutions.
Submitted: Jan 11, 2025