Paper ID: 2501.06819

A Study on Educational Data Analysis and Personalized Feedback Report Generation Based on Tags and ChatGPT

Yizhou Zhou, Mengqiao Zhang, Yuan-Hao Jiang, Xinyu Gao, Naijie Liu, Bo Jiang

This study introduces a novel method that employs tag annotation coupled with the ChatGPT language model to analyze student learning behaviors and generate personalized feedback. Central to this approach is the conversion of complex student data into an extensive set of tags, which are then decoded through tailored prompts to deliver constructive feedback that encourages rather than discourages students. This methodology focuses on accurately feeding student data into large language models and crafting prompts that enhance the constructive nature of feedback. The effectiveness of this approach was validated through surveys conducted with over 20 mathematics teachers, who confirmed the reliability of the generated reports. This method can be seamlessly integrated into intelligent adaptive learning systems or provided as a tool to significantly reduce the workload of teachers, providing accurate and timely feedback to students. By transforming raw educational data into interpretable tags, this method supports the provision of efficient and timely personalized learning feedback that offers constructive suggestions tailored to individual learner needs.

Submitted: Jan 12, 2025