Paper ID: 2501.07185
Uncertainty Guarantees on Automated Precision Weeding using Conformal Prediction
Paul Melki (IMS), Lionel Bombrun (IMS), Boubacar Diallo, Jérôme Dias, Jean-Pierre da Costa (IMS)
Precision agriculture in general, and precision weeding in particular, have greatly benefited from the major advancements in deep learning and computer vision. A large variety of commercial robotic solutions are already available and deployed. However, the adoption by farmers of such solutions is still low for many reasons, an important one being the lack of trust in these systems. This is in great part due to the opaqueness and complexity of deep neural networks and the manufacturers' inability to provide valid guarantees on their performance. Conformal prediction, a well-established methodology in the machine learning community, is an efficient and reliable strategy for providing trustworthy guarantees on the predictions of any black-box model under very minimal constraints. Bridging the gap between the safe machine learning and precision agriculture communities, this article showcases conformal prediction in action on the task of precision weeding through deep learning-based image classification. After a detailed presentation of the conformal prediction methodology and the development of a precision spraying pipeline based on a ''conformalized'' neural network and well-defined spraying decision rules, the article evaluates this pipeline on two real-world scenarios: one under in-distribution conditions, the other reflecting a near out-of-distribution setting. The results show that we are able to provide formal, i.e. certifiable, guarantees on spraying at least 90% of the weeds.
Submitted: Jan 13, 2025