Paper ID: 2501.07305
The Devil is in the Spurious Correlation: Boosting Moment Retrieval via Temporal Dynamic Learning
Xinyang Zhou, Fanyue Wei, Lixin Duan, Wen Li
Given a textual query along with a corresponding video, the objective of moment retrieval aims to localize the moments relevant to the query within the video. While commendable results have been demonstrated by existing transformer-based approaches, predicting the accurate temporal span of the target moment is currently still a major challenge. In this paper, we reveal that a crucial reason stems from the spurious correlation between the text queries and the moment context. Namely, the model may associate the textual query with the background frames rather than the target moment. To address this issue, we propose a temporal dynamic learning approach for moment retrieval, where two strategies are designed to mitigate the spurious correlation. First, we introduce a novel video synthesis approach to construct a dynamic context for the relevant moment. With separate yet similar videos mixed up, the synthesis approach empowers our model to attend to the target moment of the corresponding query under various dynamic contexts. Second, we enhance the representation by learning temporal dynamics. Besides the visual representation, text queries are aligned with temporal dynamic representations, which enables our model to establish a non-spurious correlation between the query-related moment and context. With the aforementioned proposed method, the spurious correlation issue in moment retrieval can be largely alleviated. Our method establishes a new state-of-the-art performance on two popular benchmarks of moment retrieval, \ie, QVHighlights and Charades-STA. In addition, the detailed ablation analyses demonstrate the effectiveness of the proposed strategies. Our code will be publicly available.
Submitted: Jan 13, 2025