Paper ID: 2501.07423
An Investigation into Seasonal Variations in Energy Forecasting for Student Residences
Muhammad Umair Danish, Mathumitha Sureshkumar, Thanuri Fonseka, Umeshika Uthayakumar, Vinura Galwaduge
This research provides an in-depth evaluation of various machine learning models for energy forecasting, focusing on the unique challenges of seasonal variations in student residential settings. The study assesses the performance of baseline models, such as LSTM and GRU, alongside state-of-the-art forecasting methods, including Autoregressive Feedforward Neural Networks, Transformers, and hybrid approaches. Special attention is given to predicting energy consumption amidst challenges like seasonal patterns, vacations, meteorological changes, and irregular human activities that cause sudden fluctuations in usage. The findings reveal that no single model consistently outperforms others across all seasons, emphasizing the need for season-specific model selection or tailored designs. Notably, the proposed Hyper Network based LSTM and MiniAutoEncXGBoost models exhibit strong adaptability to seasonal variations, effectively capturing abrupt changes in energy consumption during summer months. This study advances the energy forecasting field by emphasizing the critical role of seasonal dynamics and model-specific behavior in achieving accurate predictions.
Submitted: Jan 13, 2025