Paper ID: 2501.07729

Autoencoded UMAP-Enhanced Clustering for Unsupervised Learning

Malihehsadat Chavooshi, Alexander V. Mamonov

We propose a novel approach to unsupervised learning by constructing a non-linear embedding of the data into a low-dimensional space followed by any conventional clustering algorithm. The embedding promotes clusterability of the data and is comprised of two mappings: the encoder of an autoencoder neural network and the output of UMAP algorithm. The autoencoder is trained with a composite loss function that incorporates both a conventional data reconstruction as a regularization component and a clustering-promoting component built using the spectral graph theory. The two embeddings and the subsequent clustering are integrated into a three-stage unsupervised learning framework, referred to as Autoencoded UMAP-Enhanced Clustering (AUEC). When applied to MNIST data, AUEC significantly outperforms the state-of-the-art techniques in terms of clustering accuracy.

Submitted: Jan 13, 2025