Paper ID: 2501.07751
Rethinking AI Cultural Evaluation
Michal Bravansky, Filip Trhlik, Fazl Barez
As AI systems become more integrated into society, evaluating their capacity to align with diverse cultural values is crucial for their responsible deployment. Current evaluation methods predominantly rely on multiple-choice question (MCQ) datasets. In this study, we demonstrate that MCQs are insufficient for capturing the complexity of cultural values expressed in open-ended scenarios. Our findings highlight significant discrepancies between MCQ-based assessments and the values conveyed in unconstrained interactions. Based on these findings, we recommend moving beyond MCQs to adopt more open-ended, context-specific assessments that better reflect how AI models engage with cultural values in realistic settings.
Submitted: Jan 13, 2025