Paper ID: 2501.07911

Deep Learning and Natural Language Processing in the Field of Construction

Rémy Kessler (LIA), Nicolas Béchet (IRISA, EXPRESSION, UBS Vannes)

This article presents a complete process to extract hypernym relationships in the field of construction using two main steps: terminology extraction and detection of hypernyms from these terms. We first describe the corpus analysis method to extract terminology from a collection of technical specifications in the field of construction. Using statistics and word n-grams analysis, we extract the domain's terminology and then perform pruning steps with linguistic patterns and internet queries to improve the quality of the final terminology. Second, we present a machine-learning approach based on various words embedding models and combinations to deal with the detection of hypernyms from the extracted terminology. Extracted terminology is evaluated using a manual evaluation carried out by 6 experts in the domain, and the hypernym identification method is evaluated with different datasets. The global approach provides relevant and promising results.

Submitted: Jan 14, 2025