Paper ID: 2501.07953
Robust Hyperspectral Image Panshapring via Sparse Spatial-Spectral Representation
Chia-Ming Lee, Yu-Fan Lin, Li-Wei Kang, Chih-Chung Hsu
High-resolution hyperspectral imaging plays a crucial role in various remote sensing applications, yet its acquisition often faces fundamental limitations due to hardware constraints. This paper introduces S$^{3}$RNet, a novel framework for hyperspectral image pansharpening that effectively combines low-resolution hyperspectral images (LRHSI) with high-resolution multispectral images (HRMSI) through sparse spatial-spectral representation. The core of S$^{3}$RNet is the Multi-Branch Fusion Network (MBFN), which employs parallel branches to capture complementary features at different spatial and spectral scales. Unlike traditional approaches that treat all features equally, our Spatial-Spectral Attention Weight Block (SSAWB) dynamically adjusts feature weights to maintain sparse representation while suppressing noise and redundancy. To enhance feature propagation, we incorporate the Dense Feature Aggregation Block (DFAB), which efficiently aggregates inputted features through dense connectivity patterns. This integrated design enables S$^{3}$RNet to selectively emphasize the most informative features from differnt scale while maintaining computational efficiency. Comprehensive experiments demonstrate that S$^{3}$RNet achieves state-of-the-art performance across multiple evaluation metrics, showing particular strength in maintaining high reconstruction quality even under challenging noise conditions. The code will be made publicly available.
Submitted: Jan 14, 2025