Paper ID: 2501.08038

Robust Low-Light Human Pose Estimation through Illumination-Texture Modulation

Feng Zhang, Ze Li, Xiatian Zhu, Lei Chen

As critical visual details become obscured, the low visibility and high ISO noise in extremely low-light images pose a significant challenge to human pose estimation. Current methods fail to provide high-quality representations due to reliance on pixel-level enhancements that compromise semantics and the inability to effectively handle extreme low-light conditions for robust feature learning. In this work, we propose a frequency-based framework for low-light human pose estimation, rooted in the "divide-and-conquer" principle. Instead of uniformly enhancing the entire image, our method focuses on task-relevant information. By applying dynamic illumination correction to the low-frequency components and low-rank denoising to the high-frequency components, we effectively enhance both the semantic and texture information essential for accurate pose estimation. As a result, this targeted enhancement method results in robust, high-quality representations, significantly improving pose estimation performance. Extensive experiments demonstrating its superiority over state-of-the-art methods in various challenging low-light scenarios.

Submitted: Jan 14, 2025