Paper ID: 2501.08241

A Feature-Level Ensemble Model for COVID-19 Identification in CXR Images using Choquet Integral and Differential Evolution Optimization

Amir Reza Takhsha, Maryam Rastgarpour, Mozhgan Naderi

The COVID-19 pandemic has profoundly impacted billions globally. It challenges public health and healthcare systems due to its rapid spread and severe respiratory effects. An effective strategy to mitigate the COVID-19 pandemic involves integrating testing to identify infected individuals. While RT-PCR is considered the gold standard for diagnosing COVID-19, it has some limitations such as the risk of false negatives. To address this problem, this paper introduces a novel Deep Learning Diagnosis System that integrates pre-trained Deep Convolutional Neural Networks (DCNNs) within an ensemble learning framework to achieve precise identification of COVID-19 cases from Chest X-ray (CXR) images. We combine feature vectors from the final hidden layers of pre-trained DCNNs using the Choquet integral to capture interactions between different DCNNs that a linear approach cannot. We employed Sugeno-$\lambda$ measure theory to derive fuzzy measures for subsets of networks to enable aggregation. We utilized Differential Evolution to estimate fuzzy densities. We developed a TensorFlow-based layer for Choquet operation to facilitate efficient aggregation, due to the intricacies involved in aggregating feature vectors. Experimental results on the COVIDx dataset show that our ensemble model achieved 98\% accuracy in three-class classification and 99.50\% in binary classification, outperforming its components-DenseNet-201 (97\% for three-class, 98.75\% for binary), Inception-v3 (96.25\% for three-class, 98.50\% for binary), and Xception (94.50\% for three-class, 98\% for binary)-and surpassing many previous methods.

Submitted: Jan 14, 2025