Paper ID: 2501.08361
Weight Averaging for Out-of-Distribution Generalization and Few-Shot Domain Adaptation
Shijian Xu
Empirical risk minimization (ERM) is not robust to changes in the distribution of data. When the distribution of test data is different from that of training data, the problem is known as out-of-distribution generalization. Recently, two techniques have been developed for addressing out-of-distribution generalization in computer vision: weight averaging (WA) and sharpness-aware minimization (SAM). WA involves training multiple models with different hyperparameters and then averaging the weights of these models, which can significantly improve out-of-distribution generalization performance. SAM optimizes a neural network to find minima in flat regions, which have been proven to perform well under distribution shifts. While these techniques have made great progress, there is still room for improvement and further exploration. In this thesis, we propose increasing the model diversity in WA explicitly by introducing gradient similarity as a loss regularizer to further improve out-of-distribution generalization performance. We also propose combining WA and SAM to solve the problem of few-shot domain adaptation. Our extensive experiments on digits datasets (MNIST, SVHN, USPS, MNIST-M) and other domain adaptation datasets (VLCS, PACS) show that combining WA and SAM leads to improved out-of-distribution generalization performance and significantly increases few-shot domain adaptation accuracy.
Submitted: Jan 14, 2025