Paper ID: 2501.08514

Multimodal Fake News Video Explanation Generation

Lizhi Chen, Zhong Qian, Peifeng Li, Qiaoming Zhu

Multi-modal explanation involves the assessment of the veracity of a variety of different content, and relies on multiple information modalities to comprehensively consider the relevance and consistency between modalities. Most existing fake news video detection methods focus on improving accuracy while ignoring the importance of providing explanations. In this paper, we propose a novel problem - Fake News Video Explanation (FNVE) - Given a multimodal news containing both video and caption text, we aim to generate natural language explanations to reveal the truth of predictions. To this end, we develop FakeNVE, a new dataset of explanations for truthfully multimodal posts, where each explanation is a natural language (English) sentence describing the attribution of a news thread. We benchmark FakeNVE by using a multimodal transformer-based architecture. Subsequently, a BART-based autoregressive decoder is used as the generator. Empirical results show compelling results for various baselines (applicable to FNVE) across multiple evaluation metrics. We also perform human evaluation on explanation generation, achieving high scores for both adequacy and fluency.

Submitted: Jan 15, 2025