Paper ID: 2501.08600
AutoRestTest: A Tool for Automated REST API Testing Using LLMs and MARL
Tyler Stennett, Myeongsoo Kim, Saurabh Sinha, Alessandro Orso
As REST APIs have become widespread in modern web services, comprehensive testing of these APIs has become increasingly crucial. Due to the vast search space consisting of operations, parameters, and parameter values along with their complex dependencies and constraints, current testing tools suffer from low code coverage, leading to suboptimal fault detection. To address this limitation, we present a novel tool, AutoRestTest, which integrates the Semantic Operation Dependency Graph (SODG) with Multi-Agent Reinforcement Learning (MARL) and large language models (LLMs) for effective REST API testing. AutoRestTest determines operation-dependent parameters using the SODG and employs five specialized agents (operation, parameter, value, dependency, and header) to identify dependencies of operations and generate operation sequences, parameter combinations, and values. AutoRestTest provides a command-line interface and continuous telemetry on successful operation count, unique server errors detected, and time elapsed. Upon completion, AutoRestTest generates a detailed report highlighting errors detected and operations exercised. In this paper, we introduce our tool and present preliminary results.
Submitted: Jan 15, 2025